The following problems cover the skills that are necessary to be successful on Test A.

1. Simplify: $\sqrt[3]{\frac{-16 x^{3}}{2 y^{6}}}$.

$$
\begin{aligned}
\sqrt[3]{\frac{-16 x^{3}}{2 y^{6}}}=\left(\frac{-16 x^{3}}{2 y^{6}}\right)^{1 / 3} & =\left(\frac{-16}{2}\right)^{1 / 3} \cdot\left(x^{3}\right)^{1 / 3} \cdot\left(\frac{1}{y^{6}}\right)^{1 / 3} \\
& =(-8)^{1 / 3} \cdot x^{3 / 3} \cdot\left(\frac{1^{1 / 3}}{y^{1 / 3}}\right) \\
& =-2 \cdot x \cdot \frac{1}{y^{2}}=\frac{-2 x}{y^{2}}
\end{aligned}
$$

2. Perform the indicated operations and simplify: $\left(m^{n+1} r^{n}\right)\left(3 m^{n} r^{2 n}\right)^{-1}$.

$$
\begin{aligned}
\left(m^{n+1} r^{n}\right)\left(3 m^{n} r^{2 n}\right)^{-1}=m^{n+1} r^{n} \cdot \frac{1}{3 m^{n} r^{2 n}}=\frac{m^{n+1} r^{n}}{3 m^{n} r^{2 n}}=\frac{m^{n} \cdot m^{\prime} \cdot r^{n}}{3 m^{n} \cdot r^{n+n}} & =\frac{m^{n}}{3 m^{n}} \cdot m \cdot \frac{r^{n}}{r^{n} \cdot r^{n}} \\
& =\frac{1}{3} \cdot m \cdot \frac{1}{r^{n}}=\frac{m}{3 r^{n}}
\end{aligned}
$$

3. Perform the indicated operations and simplify: $\frac{a b}{\frac{1}{a}+\frac{1}{b}}$.

$$
\begin{aligned}
\frac{a b}{\frac{1}{a}+\frac{1}{b}}=\frac{a b}{\left(\frac{b}{b} \frac{1}{a}+\frac{1}{b}\left(\frac{a}{a}\right)\right.}\left(\frac{a}{a}\right)\left(\frac{b}{b}\right)=\frac{\frac{a^{2} b^{2}}{a b}}{\frac{b}{a b}+\frac{a}{a b}}=\frac{\frac{a^{2} b^{2}}{a b}}{\frac{a+a}{a b}} & =\frac{a^{2} b^{2}}{a b} \cdot \frac{a b}{b+a} \\
& =\frac{a^{2} b^{2}}{b+a}=\frac{a^{2} b^{2}}{a+b}
\end{aligned}
$$

4. Rationalize the denominator: $\frac{2}{\sqrt{2}+b}$.

$$
=\frac{2}{\sqrt{2}+6} \cdot \frac{\sqrt{2}-6}{\sqrt{2}-6}=\frac{2 \sqrt{2}-26}{2-6^{2}}
$$

5. Evaluate $(5 x+1)^{3 / 4}-(7-x)^{0}$ for $\mathrm{x}=3$.

$$
\begin{aligned}
& (5 x+1)^{3 / 4}-(7-x)^{0} \\
= & (5(3)+1)^{3 / 4}-(7-(3))^{0} \\
= & (15+1) / 4-(4)^{0} \\
= & (16)^{3 / 4}-1 \\
= & 8-1=7
\end{aligned}
$$

6. Evaluate $-\left(2 b^{2}\right)^{-1}$ when $b=-2$.

$$
-\left(2 b^{2}\right)^{-1}=-\left(2(-2)^{2}\right)^{-1}=-(2(4))^{-1}=-\frac{1}{8}
$$

7. Simplify completely: $2 \sqrt{50}-7 \sqrt{18}+\sqrt{8}$.

$$
\begin{aligned}
& 2 \sqrt{50}-7 \sqrt{18}+\sqrt{8} \\
= & 2 \sqrt{25 \cdot 2}-7 \sqrt{9 \cdot 2}+\sqrt{4 \cdot 2} \\
= & 2 \cdot 5 \sqrt{2}-7 \cdot 3 \sqrt{2}+2 \sqrt{2} \\
= & 10 \sqrt{2}-21 \sqrt{2}+2 \sqrt{2} \\
= & -9 \sqrt{2}
\end{aligned}
$$

8. Simplify completely: $2 u\left(3 u^{2}-1\right)-\left(-8 u^{3}-14 u+6\right)$.

$$
\begin{aligned}
& 2 u\left(3 u^{2}-1\right)-\left(-8 n^{3}-14 n+6\right) \\
= & 2 u\left(3 u^{2}\right)-2 n(1)+8 u^{3}+14 u-6 \\
= & 6 u^{3}-2 n+8 n^{3}+14 u-6 \\
= & 6 u^{3}+8 n^{3}-2 u+14 u-6 \\
= & 14 u^{3}+12 u-6
\end{aligned}
$$

9. Simplify completely: $4(2 x+1)^{2}+3(2 x+1)+1$.

$$
\begin{aligned}
& 4(2 x+1)^{2}+3(2 x+1)+1 \\
= & 4(2 x+1)(2 x+1)+3(2 x)+3(1)+1 \\
= & 4\left(4 x^{2}+2 x+2 x+1\right)+6 x+3+1 \\
= & 4\left(4 x^{2}+4 x+1\right)+6 x+4 \\
= & 16 x^{2}+16 x+4+6 x+4 \\
= & 16 x^{2}+22 x+8
\end{aligned}
$$

10. Factor completely: $32 x^{4} y-162 y$.

$$
\begin{aligned}
& 32 x^{4} y-162 y \\
= & 2 y\left(16 x^{4}-81\right) \\
= & 2 y\left(4 x^{2}+9\right)\left(4 x^{2}-9\right) \\
= & 2 y\left(4 x^{2}+9\right)(2 x+3)(2 x-3)
\end{aligned}
$$

11. Perform the indicated operation and simplify completely:

$$
\begin{aligned}
& \frac{z^{2}+z-12}{2 z^{2}+6 z}=\frac{(z-3)(z+4)}{2 z(z+3)} \\
& \frac{z^{2}+3 z}{6 z+24}=\frac{z(z+3)}{6(z+4)} \\
& \frac{(z-3)(z+4)}{2 z(z+3)} \cdot \frac{z(z+3)}{6(z+4)}=\frac{z-3}{2 z} \cdot \frac{z}{6}=\frac{z(z-3)}{12 z} \\
& =\frac{z-3}{12}
\end{aligned}
$$

12. Perform the indicated operation and simplify: $\frac{3 c}{c-2}+\frac{c+1}{2-c}$.

$$
\begin{aligned}
& \frac{3 c}{c-2}+\frac{c+1}{2-c}=\frac{3 c}{c-2}+\frac{c+1}{-(c-2)}=\frac{-3 c}{-(c-2)}+\frac{c+1}{-(c-2)} \\
&=\frac{-3 c+c+1}{-(c-2)}=\frac{-2 c+1}{-(c-2)}=\frac{2 c-1}{c-2}
\end{aligned}
$$

13. Solve for $z: 7 z-(4 z-9)=24+5(z-1)$

$$
\begin{aligned}
& 7 z-(4 z-9)=24+5(z-1) \\
= & 7 z-4 z+9=24+5 z-5 \\
= & 3 z+9=19+5 z \\
= & -10=2 z \\
& -5=z
\end{aligned}
$$

14. Solve for x :

$$
\begin{aligned}
& \frac{a}{3}+5 x=b\left(\frac{x}{3}+2\right) \\
3 \cdot & \left(\frac{a}{3}+5 x=\frac{b x}{3}+2 b\right) \cdot 3 \\
= & a+15 x=b x+6 b \\
= & 15 x-b x=6 b-a \\
= & x(15-b)=6 b-a \\
= & x=\frac{6 b-a}{15-b}
\end{aligned}
$$

15. Solve for $t: 2 t^{2}+4 t=9 t+18$.

$$
\begin{aligned}
& 2 t^{2}+4 t=9 t+18 \\
&= 2 t^{2}+4 t-9 t-18=0 \\
&= 2 t^{2}-5 t-18=0 \\
&=(2 t-9)(t+2)=0 \\
& 2 t-9=0 \quad t+2=0 \\
& 2 t=9 \quad t=-2 \quad t=\frac{9}{2},-2 \\
& t=\frac{9}{2} \quad t \quad
\end{aligned}
$$

16. Solve for $s:-2 s^{2}-4 s+2 s^{3}=0$.

$$
\begin{gathered}
\quad-2 s^{2}-4 s+2 s^{3}=0 \\
=\quad 2 s\left(-s-2+s^{2}\right)=0 \\
=2 s\left(s^{2}-s-2\right)=0 \\
=2 s(s-2)(s+1)=0 \\
2 s=0 \quad s-2=0 \quad s+1=0 \\
s=0 \quad s=2 \quad s=-1 \\
\\
s=0,2,-1
\end{gathered}
$$

17. Solve for $p: \frac{4}{p}-\frac{2}{p+1}=3$.

$$
\begin{aligned}
& p\left(\frac{4}{p}-\frac{2}{p+1}\right)=3(p) \\
= & 4-\frac{2 p}{p+1}(p+1)=3 p(p+1) \\
= & 4(p+1)-2 p=3 p(p+1) \\
= & 4 p+4-2 p=3 p^{2}+3 p \\
= & 2 p+4=3 p^{2}+3 p \\
& 3 p^{2}+p-4=0 \\
& (3 p+4)(p-1)=0 \\
& p=-\frac{4}{3} \quad p=1
\end{aligned}
$$

18. To get a B in a course a student must have an average of at least 80% on five tests that are worth 100 points each. On the first four tests a student scores $92 \%, 83 \%, 61 \%$, and 71%. Determine the lowest score the student can receive on the fifth test to assure a grade of B for the course.

$$
\begin{aligned}
& B=807 \text { a average on } s \text { tests; each test is worth } 100 \text { points } \\
& \text { let } x \text { represent the lowest score on the st test to receive a } B \text { in } \\
& \text { the class. } \\
& \text { (5) } 0.80=\frac{0.92+0.83+0.61+0.71+\text { tests }_{\text {test }}^{\text {test }} \text { test }}{\text { test }} \text { (5) } \\
& 4.00=3.07+x \\
& 0.93=x \\
& \text { The student must get at least a } 937 \text { on the fifth test to receive a } B \\
& \text { in the class. }
\end{aligned}
$$

19. The area of a rectangle is 84 square feet and the length is 6 feet longer than the width. If w represents the width, write an equation that could be used to find the dimensions of the rectangle.

$$
\begin{aligned}
& A=l \cdot w=84 \mathrm{ft}^{2} \\
& l=w+6 \\
& 84=(w+6) \cdot w \\
& w(w+6)=84
\end{aligned}
$$

20. A furniture store drops the price of a table 37 percent to a sale price of $\$ 364.77$. What is the original price?
Let P represent the original price.

$$
\begin{aligned}
& P-0.37 P=364.77 \\
& P(1-0.37)=364.77 \\
& \frac{P(0.63)}{0.63}=\frac{364.77}{0.63} \longrightarrow P=579
\end{aligned}
$$

21. Solve for $t:(t+2)^{2}=8$.

$$
\begin{gathered}
\sqrt{(t+2)^{2}}=\sqrt{8} \\
t+2= \pm \sqrt{8} \\
t=-2 \pm \sqrt{8} \\
t=-2 \pm \sqrt{4 \cdot 2} \\
t=-2 \pm 2 \sqrt{2}
\end{gathered}
$$

22. Solve for $z: z^{2}-4 z+6=0$.

$$
\begin{aligned}
& z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=1 \quad b=-4 \quad c=6 \\
& z=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(6)}}{2(1)} \\
& z=\frac{4 \pm \sqrt{16-24}}{2}=\frac{4 \pm \sqrt{-8}}{2}=\frac{4 \pm \sqrt{4 \cdot(-2)}}{2}=\frac{4 \pm 2 \sqrt{-2}}{2}=2 \pm \sqrt{-2} \rightarrow z=2 \pm i \sqrt{2}
\end{aligned}
$$

23. Perform the indicated operation and simplify: $\sqrt{-2} \cdot \sqrt{-24}$.

$$
\sqrt{-2} \cdot \sqrt{-24}=\sqrt{(-2)(-24)}=\sqrt{48}=\sqrt{16 \cdot 3}=4 \sqrt{3}
$$

24. Solve for $r: 5-3 r \leq 8$.

$$
\begin{aligned}
5-3 r & \leq 8 \\
\frac{-3 r}{-3} & \leq \frac{3}{-3} \\
r & \geq-1
\end{aligned}
$$

25. Solve for x : $\quad|2 x+1| \geq 7$.

$\|2 x+1\| \geq 7$		
$-(2 x+1) \geq 7$	or	$(2 x+1) \geq 7$
$-2 x-1 \geq 7$	$2 x \geq 6$	
$-2 x \geq 8$	$x \geq 3$	
$x \leq-4$		
$(-\infty,-4]$	or	$[3, \infty)$

26. Find the domain of $y=\sqrt{4-5 x}$.

$$
\begin{aligned}
0 & \leq \sqrt{4-5 x} \\
0 & \leq 4-5 x \\
5 x & \leq 4 \\
x & \leq \frac{4}{5} \rightarrow\left(-\infty, \frac{4}{5}\right]
\end{aligned}
$$

27. Find the x-intercepts of $y-2 x^{2}-13 x=6$.

$$
\begin{gathered}
y-2 x^{2}-13 x=6 \\
0-2 x^{2}-13 x=6 \\
2 x^{2}+13 x+6=0 \\
(2 x+1)(x+6)=0 \\
x=-\frac{1}{2} \quad x=-6 \\
\left(-\frac{1}{2}, 0\right) \quad(-6,0) \\
\left(-\frac{1}{2}, 0\right),(-6,0)
\end{gathered}
$$

28. Find the equation of the graph at the right:

$$
y=m x+b
$$

m is slope b is y-intercept

we can see that it intersects the y-axis at $y=2$ so $b=2$.

$$
m=\frac{\text { rise }}{\text { run }}=\frac{4}{4}=1 \text { and } \frac{4}{-4}=-1
$$

because of the vertex on the y-axis, we can see that we are taking the absolute value of x, so the equation is: $y=|x|+2$
29 . Find the distance between $(6,3)$ and $(-2,4)$.

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}}=\sqrt{(-2-6)^{2}+(4-3)^{2}}=\sqrt{(-8)^{2}+(1)^{2}}=\sqrt{64+1}=\sqrt{65}
$$

30. Find the midpoint of the line segment joining $(6,9)$ and $(-3,1)$.

$$
\left(\frac{X_{1}+x_{2}}{2}, \frac{Y_{1}+Y_{2}}{2}\right)=\left(\frac{6-3}{2}, \frac{9+1}{2}\right)=\left(\frac{3}{2}, \frac{10}{2}\right)=\left(\frac{3}{2}, 5\right)
$$

31. Find the slope and y-intercept of the line $5 x+4 y=8$.

$$
5 x+4 y=8 \rightarrow 4 y=-5 x+8 \rightarrow y=-\frac{5}{4} x+2
$$

$y=m x+b$ where m is the slope and b is the y-intercept, so the slope is $m=\frac{5}{4}$ and the y-intercept is $b=2$.
32. Find the equation of the line perpendicular to $3 y+2 x-3=0$ passing through $(4,-1)$.

$$
\begin{aligned}
& 3 y+2 x-3=0 \\
& 3 y=-2 x+3 \\
& y=-\frac{2}{3} x+1 \quad \text { perpendicular line slope }=\frac{3}{2} \\
& y-(-1)=\frac{3}{2}(x-4) \\
& y=\frac{3}{2} x-6-1 \rightarrow y=\frac{3}{2} x-7 \\
& 2 y=3 x-14 \\
& 2 y-3 x+14=0
\end{aligned}
$$

33. Find $\quad f(-4)$ if $\quad f(x)=\frac{2 x^{2}-11}{3 x}$

$$
f(x)=\frac{\left.2 x^{2}-1\right)}{3 x} \rightarrow f(-4)=\frac{2(-4)^{2}-11}{3(-4)}=\frac{2(16)-11}{-12}=\frac{32-11}{-12}=\frac{21}{-12} \rightarrow f(-4)=\frac{-7}{4}
$$

34. Find $f(b+2)$ if $f(x)=5-3(x+1)$.

$$
\begin{aligned}
f(x) & =5-3(x+1) \\
f(b+2) & =5-3((b+2)+1) \\
f(b+2) & =5-3(b+3) \\
f(b+2) & =5-3 b-9 \\
f(b+2) & =-3 b-4
\end{aligned}
$$

35. Find the domain and the range of the function graphed at the right:
The domain is the inputs, or x-values, and the range is the outputs, or y-values.

$$
\begin{array}{|l|}
\hline \text { domain: }[-3,4] \\
\text { range : }[-2,2]
\end{array}
$$

36. If $(5,6)$ is a point on the graph of $y=g(x)$, find a point on the inverse graph, $g^{-1}(x)$

$$
\begin{array}{r}
y=g(x) \rightarrow 6=g(5) \rightarrow 5=g^{-1}(6) \\
(6,5)
\end{array}
$$

37. If $h(t)=\frac{t}{t+1}$, find the value of t so that $h(t)=3$.

$$
\begin{aligned}
h(t)=\frac{t}{t+1} ; h(t)= & 3 \rightarrow 3=\frac{t}{t+1} \\
& (t+1) 3=\frac{t}{t+1}(t+1) \\
= & 3(t+1)=t \\
& =3 t+3=t \\
& =3=-2 t \\
& -\frac{3}{2}=t
\end{aligned}
$$

38. If the graph of $y=f(x)$ is at the right, sketch the graph of $y=|f(x)|$.
when we take the absolute value of a negative number, it becomes
 positive, so wherever the y-value is negative on the original graph, it is positive on the new graph.

$$
\begin{aligned}
10^{b} & =a \\
\log _{10}\left(10^{b}\right) & =\log _{10}(a) \\
b & =\log _{10} a \\
\log a & =b
\end{aligned}
$$

40. Rewrite as a single $\operatorname{logarithm:~} \frac{1}{2} \log x+4 \log y-2 \log z$.

$$
\begin{aligned}
& \frac{1}{2} \log x+4 \log y-2 \log z \\
= & \log \left(x^{1 / 2}\right)+\log y^{4}-\log \left(z^{2}\right) \quad \text { (power rule) } \\
= & \log (\sqrt{x})+\log (y)+\log \left(\frac{1}{z^{2}}\right) \quad \text { (quotient rule) } \\
= & \log \left(\sqrt{x} \cdot y^{4} \cdot \frac{1}{z^{2}}\right)=\log \left(\frac{\sqrt{x} y^{4}}{z^{2}}\right) \quad \text { (product rule) }
\end{aligned}
$$

41. Solve for t : $3^{2 t}=27^{2 t-1}$.
42. Solve the system of equations:

$$
\left\{\begin{array}{l}
4 x+3 y=0 \\
8 x=9 y+2
\end{array}\right.
$$

$$
4 x+3 y=0 \rightarrow(4 x+3 y=0) \cdot 3 \rightarrow 12 x+9 y=0
$$

$$
\begin{aligned}
8 x=9 y+2 \rightarrow 8 x-9 y=2 \rightarrow+(8 x-9 y & =2) \\
20 x & =\underline{2}
\end{aligned}
$$

$$
\begin{gathered}
(4 x+3 y=0)--2 \\
8 x-9 y=2
\end{gathered}
$$

$$
\begin{array}{rl}
20 & 20 \\
x & =\frac{2}{20}
\end{array}
$$

$$
\frac{-15 y}{-15}=\frac{2}{-15}
$$

$$
x=\frac{1}{10}
$$

$$
y=-\frac{2}{15}
$$

43. Express the length of side a in terms of m :

$$
\begin{aligned}
& a^{2}+m^{2}=8^{2} \\
& a^{2}+m^{2}=64 \\
& a^{2}=64-m^{2} \\
& a=\sqrt{64-m^{2}}
\end{aligned}
$$

